Final Exam MATH 142 -CALCULUS II

There are ten questions each worth 10 points.
Carefully read the instruction at the top of each page.
This is a closed book exam - you are not permitted to use a notecard or any notes, besides the trigonometric identity sheet. If you would like extra scratch paper raise your hand. Calculators and other electronic aides are not permitted.

Good luck!

Question 1

Find a Taylor (or Maclaurin) expansion of $\frac{-2}{4+x}$. You may center the expansion at any point x_{0} however I recommend using a geometric series. Find the Radius of Convergence and the Interval of Convergence. Determine if the endpoints of the interval converge, converge absolutely or diverge.

Question 2

Find the Taylor expansion of $\cos (2 x)$ centered at $x_{0}=\pi$. Find the Radius of Convergence and the Interval of Convergence.

Question 3

Find the length of the curve parametrized by

$$
x=t^{3}, \quad y=3 t^{2} / 2, \quad 0 \leq t \leq \sqrt{3} .
$$

(Hint: You may need to use the trig substitution $t=\tan \theta$ to evaluate this integral!)

Question 4

Find the degree 4 Taylor polynomial of the function $e^{x} \sin x$.

Question 5

Describe the parametrized curve of $x=3 t+2, y=t-1(-\infty<t<\infty)$ by plotting the curve or by converting to rectangular coordinates. Find $d y / d x$.

Question 6

Estimate the definite integral $\int_{0}^{1} \cos x^{2} d x$ with an error of less than 0.001 using a Taylor Series. You may do as you like (as long as you justify your answer) however I recommend the following steps.
a. Write the Maclaurin Series for $\cos x$ and replace the x with x^{2}.
b. Integrate the above series to get a series for $\int \cos x^{2} d x$.
c. Evaluate the above integral at the limits of integration and determine how many terms are needed to achieve an error of less than 0.001 . (You do not need to simplify your answer.)

